111, On the pulsations of spheres in an elastic medium. By A. H. Leany, M A,

1. THE motion due to the pulsations of spheres of the same period of pulsation in
an incompressible fluid has been investigated by Professor Bjerknes of Christiania®, by
whom the following results have been obtained, If the pulsations of two spheres are in
the same phase of vibration, there will be an apparent force on each of the bodies, which
varies according to the law of the inverse square of the distance, and tends to make the
spheres approach one another; but, if the pulsations are in phases differing by half a com-
plete period, there will be a force tending to repel the spheres from one another, and
varying according to the same law These results have been experimentally verified, and
similar effects have been shewn by some experiments, described in the Jowrnal of Telegraph
Engineers for 1882, to hold in air. An apparatus shewing these attractive and repulsive
effects, together with several other “inverse analogies,” to use Dr Bjerknes’ phrase, between
electro magnetic effects and pulsations under water of spheres and cylinders was exhibited
at the Pariz exhibitions,

2, These phenomena, together with several others of o kindred character, may be
explained by the following general considerations. Suppose a periodic force of the nature
of surface tensions or pressures to be acting on a sphere, whose centre is fixed in space,
and which is itsell pulsating with a simple harmonic motion. Then, since the magnitude
of the force which acts upon the boedy varies as the superficial area, it is clear that the
effect of the force will be greatest, when the surface of the body is greatest. If therefore
the force iz a =mimple harmonic function of the time, and has the same period as that
of the pulsations of the body, it is clear that its effect during one complete oscillation
will be to urge the body in the direction in which the force acted when the area of
the sphere was a maximum, For, considering any two instants the time between whicl
is half a complete peried, it is clear that the force at each of these instants will be the
same In magnitude and opposite in direction; so that the resultant effect will be to urge
the body in the direction which the force had when the superficial area of the sphere
was the greater. Thus we have only to consider the effect of the force during that half
period when the sphere is greater than its mean value; ie. than s value at a time
midway between the instants of greatest contraction and expansion. Let 7 be the time
when the sphere is greatest, Then, if 2p iz the complete period, we shall only have to

* Bee the Reports of the Procecdings of the Scientific + Bee La Lumitre Electrigue, Gth Octoand th Now,
Sogiery of Christiania, 1575, anid the Reportorium der 18381, and Engenesring, 1553,
Mathematik von Kanigatierger rd Zeuner, 1576, p, 205,
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comsider the force between the instants = +Z and 7—2 . But if ¥ is the time when the

- r - J » o
force on the sphere is zero, where 7' lies between 7+1L and T-‘E, it is clear that the
farce at the instants v 4« and v —a are the same in magnitude and opposite in direction.
Also, if ¥ =7 is positive, the effect of the force at the time 7' +a will be less than at
the time 7" —a; sinee the area of the body which 15 acted on is less at the former instant
than at the latter. Thus the action on the sphere during the period between the instants
T-*L and 7" will exeeed the action in the opposite direction during the period between

-

‘,'I-

v and 7+7%, and the resultavt action during a complete ocscillation will be the same in

direction as at the time =, when the area of the sphere was a maximum. A similar result
will follow if ¥ —7 is negative,

We have therefore, in order to determine the direction in which a periodic force of
the character described urges a pulsating sphere, merely to determine the direction which
the force has when the area of the sphere is & maximum. Now, in the case of two spheres
A and B pulsating with their centres fixed in an incompressible fluid; it can easily be
seen that the change of pressure due to the pulsations of A increases with the time
differentinl of the veloeity along the radius vector from the centre of A. The action on B
due to this change of pressure is of course greater on that side which faces 4 than on the
opposite side, and the foree will therefore be a repulsion when the velpcity due to the
pulsations of A is inereasing, and an attraction when the wveloeity is diminishing. Now
when the volume of 4 is greater than its mean value the ve]uuit:,r is diminishing ; hence,
if the pulsations of 4 and B are in the same phase of vibration, there will be an attractive
force on B when its volume is greatest, and the general effect of the changes of pressure
due to A's pulsation will be an attraction towards A. Similarly, if the pulsations are in
opposite phases, the effect will be a repulsion,

But if these changes of volume are executed in a medium having properties similar
to those of the ether, in which the vibrations producing the sensation of light are supposed
to be propagated, the results which have been given above will not continue to hold. For,
in this ease there will be no flux st the surface of B, if the displacements are not large;
and the force will not depend upon the veloeity, or upon the changes of velocity, but upon
the absolute deformations. If the waves of displacement are long, compared with the
distance between A4 and B, the medinm will be compressed as 4 expands; and the effect
at the surface of B will be a repulsion if the volume of A is greater than its mean value,
Thus the effects produced in an incompressible fluid will be reversed if the oscillations are
l:li_"l'fl_in]if,.‘[] in an elastic medium, and like ]':thBES of Pulsnt-iul‘n will g'_l‘lﬂ': rise to a repuisiun
and unlike phases to an attraction on the pulsating bodies. This way of looking at the
problem appears to indicate, that, if spheres are pulsating in an clastic medium, the period
of pulsation being such as to give rise to waves which arc long, compared with the distances
between the spheres, the results obtained by Professor Bjerknes will be reversed. If the
distance of B from A esceed a quarter wave length it is evident that this result will not
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be true. Suppozing for example, that the medinm under consideration is the same as that
in which light-vibrations are performed, we shall have, taking the approximate velocity of
propagation to be 200,000 miles a second, a wave length of 200 miles ecorresponding to
1000 vibrations in a second. Thus for all distances of 4 and B at which any sensible
effect can be ohserved we ean take the phase of the vibration to be the same; but if
the distance exceeds 50 miles our argoment dues not apply.

3. These considerations are founded on a prineiple which seems to underlie many
cases of differential action; namely, that if a body be acted on by a force F, where F is
a simple harmonic function of the time; and, if the action of the force on the body due
to wariations in the position, magnitude, or shape of the body be expressed by FF', where
F' is also a simple harmonic function of the time of the same period as F'; then the effeet
of the force on the body will be to wurge it in that direction which F had when F' was
a maximum. This principle can also be extended to the case where F' is any periodic
function of the same period as F, provided that / has only one maximum value during
the complete period 2p, and also satisfies the condition F'(v+a)=F (r—2), where 7 i the
time when F' is a maximum. The truth of this principle can be established by the same
considerations as those employed in § 2; since we shall have F'(t) diminishing, as the
numerical value of ¢— 7 increases from zero to p; the complete period being 2p; and the
whole of the argument at the beginning of § 2 will apply. As an example of differential
action which can be treated by the prineiple just enunciated may be mentioned that of
a body placed in a field of force, where the force at any point has for compenents

. = i 3 = : :
leu?, M ::mm; ;I s‘mw—t, where L, M, N are fanctions of the eco-ordinates of the
; .

point. Let the body be constrained by some independent cause to move, so that at the
- ol i L 4 * " !
time ¢ its position is such that the force acting on it has for components L sin™
P
- WE * # Wr b L h) * - . * . o .
Msin—, N sin P-, where L, M, N are periodic functions of the time, of period equal
P

to 2p, which have only one maximum value during that period, and satisfy the functional
equation f(t4a)=f(r—a), where 7 is the time when § is a maximum. It will then be

found that the action of any component L sith;—f will be to urge the body in that direction

in which the component acted when L was a maximum.

4. These considerations do not however give the law of the action of the force, either
in this case, or in the case of a pulsating body which was mentioned in § 2. Tn order to
completely investigate the mutual action of two pulsating bodies in an elastic medium it
will be necessary to find the displacement at any point due to their joint effect, and it will
be found that the law of attraction in the case of unlike phases, and of repulsion in the
case of like phases will be that of the inverse square of the distance to the fivst order
of approximation. The term of next order of importance will always be a repulsion and
will vary aceording to the law of the inverse cube. In the following work I propose to
establish these results.
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(reneral expressions for @ periodic and steady displacement symmetrical about
an @S,

The equations of motion of an elastic medium® are

i@ G =2 50 G+ (3 %

df* p \d8 ~ de
oAl AN+ 2 th pfdz _dy\ | .
rsind G ¢ at: (ﬂT*ﬁ ﬂ,r) ........................ (1),

d% A+2p 1 de pyfdB d’n)

dF = p  «n# c.-:qb"';(ﬁ‘dﬂ g
where u is the displacement along radius vector, v is the displacement along the tangent
to the meridian tending from the pole, and w is the displacement along a parallel of
longitude tending from the fixed meridian; 7, 8, ¢ being the co-ordinates of a particle in
its undisturbed position; X and g being the coefficients of elasticity of the medium, p its
density, and ¢, a, 8, v being defined by the eguations

E=§i ——I:i' n!]+ lﬂdg(umnﬂ}{- sj-uﬂ ﬁt;ﬁ

- ﬁ {d_fi (rv) — E_H (rw sin ﬂ}}
1 . due I- w8
ﬁ:m{d- (rw sin &) ti_gb}

The particular values of w, v, w depending upon h—r_ﬂ#, which are propagated with
the wvelocity _:j, must make the terms vanish which depend upon *

Thus we must have

d d ; e a0
:f_-;:-{w} ~ 75 (rwe sin @) =-1’mﬂﬁig ;

d oo Ot e
= (rw sin ) — -I'ii; =sin @ r&i; -
du 1 dy

dé u.’r{} sinf de”

Substituting in equations (1) we get j—ﬁt('g}f)=ﬁ, ete. Thus since +f i1s essentially

Ny Mo o W o amfare
periodic, we must have dr—ﬂ, Eé-ﬂ, = =0, or a=8=y=0.

* Lamé's Elanticity, Art. B4
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These conditions give

—d—F —E‘ 1"14':|s;in|15'—EI 3)
=5, =5 = ()
where F' is a function of the same period as w, », w. MHence e=¢'F, where
s_ 1 o el 1 d o 1 d*
v :.é"jr'(1 n"'*.r') tane af (sm&'[m) * e de*’
and equations (1) reduce to dﬂF l-:?'“ il S v (4).

Next taking the values of w, », w which depend upon ﬁ;, and which travel with

velocity E  we have e=0, or
P

= (: ' sin #) 4 iﬂ‘{m sin &) 4 - lif'{?"u.r]I' .

: dM dN)
: 2t o e T
Henece we must have  sinf.u dp ~ dd
g dN dL
rsinf.v= T E L
_dL dM
a0 @ |

Substituting in equations (1), we get

d'L u 2] 2:nf d M) 2cotf dM 2 t_{-;‘-’}
dﬁ FrE E{?' r IJE(%]ILB ot de  Pein’d dg
_d(d’M My¢ ... 2cotd dN
_:E-r{d!’ p (‘U, M_;ﬁam“_ﬂ E)} '
LD (o 200 4 (I S0 2 AN _d @Y u o)
dd | dt* p | ™ d@\siné, v dr mn'd de d't'ici:‘. ]
d (d'M _p 2cotd dNY _d (N pu }
d¢{ E(v‘M 7 sin'f r:'qb)j' rfﬁ'{n’t” .Ev"ﬂ g
s d® 1 d*  cotf d 1 il
MR V=gt aet e a4t inte 7@
......................... 6).
. 8 1 d° cotd :f+_l____ d* 6)
tdt ' dE © de T sind dg°
These results give
a'L _p o _ 2ein@ d ¢ M 2cotd dM 2 ﬁ]_
dt j_: Vi & de (ﬂm E} —# dr P ein’f do
d'M w4 2e0td dN
Tethasze sl L fee it
d*N :
T =5 VD
Vor, XIV. Parr 1, 7
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5. In order to get a displacement symmetrical about an axis, we put w=0 and e 0.

e
e dF 1 dN
Thlh W I.].] g\\.l." "= ﬁ; - ;'E_ﬁ_mi ?{} 1
1 F 1 AN SR e (1),
=7 d6 Trsnd dr
where F satisfies the equation
d’F_A+2u (d'F 2 dF 1 &l
el? 5 P_ {t-f.f" -+ 'r m +Tm r:_fﬂ (Elﬂﬂgg )} ................... 1:2:},
and N satisfies the equation
d'N B {d ,P:T_I_Eiiﬁ _u?_!_ (L dﬁ_r) ()
dtt  pl|d* " df\sind db)| R

Now, whatever be the forms of F and N, they can be expanded in series of Legendre's
coefficients A F, (p), where p=cos@ and A is a function of » and ¢ only. Also, sinee
A
L

sinf —

qg be expressed in terms of Legendre’s cocfficients, F and N can also be ex-

pressed in series of form B sin @ dr;", where B, is a function of v and ¢ only.

Put F=%A4d P, (u) and N=3 B, siné ﬂ:-'lf;&} and the equations (2) and (3) reduce to

d*A, A+ 2u {i”ﬂ +:E d4, n{u+I)A}
8= drt " r dr @ # s

d'B, {d”ﬂ nin+1) B }

d.'f el ™

Let us now suppose the displacement to be oscillatory, and steady, of period equal

PP P
A+ 2u B

A = £, (ikr) e,
B, =F (ikr)e™,

2
to —;:- We shall get, on this supposition, if *= 3

where f_, F_are the solutions of the equations

af. .2 df. . § (n + '.l} d*F, n(n+1)] 5 _
d (kr)* * Jor d (kr) i3 1' }f =1 an ,.:,!U‘T]i + {] T () } F,=0.

The solutions of these equations are

[ (kr)y= A r ( r;)"” e A n(] [I)*HE‘”“'

vy il

3 75 1 dA"™ 1 djx™
¥ |" = gl ihe H LR e —ile
F (ihr)y= B (’_ d:’) et B (F a'.r') i
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Henee, if f, and F, have the meanings given above;

u=3P (1 ;JW_-"'{&} n f?_t: D g fu’uj} g'nt
S i3
v=E;H—- {f:,hﬁ} d . Fhﬁr}} i

with two similar terms obtained by changing the sign of 4, will give the complete value
of a periodic and steady vibration, which is symmetrical about an axis,

6. The series f, (iky) and F (dhr) can be expanded in powers of kr and Ar respec-

tively.
N EA S Tl
For putting r* =2z, we have —i _.EHTE,
. A"
therefore f.lidr)=4 ,gﬂ Sl (dSJ i3
" T DR (1),
F.(ihr)=Bz* 2 (d&) gz
with other terms obtained by changing the sign of i
2n—2sl g F=im!
Hence, if when n—s 18 mgntwr: —-r;- S! medns (— 1) 55
e j'_l'En;' soon 25! oL el L1 )
ﬁ(lk’."}-—r{ 1:] A L{J {3“-”! ------ +|:— l}mfiﬂ-?; +2 AT I'J{-i'} 1+"‘5 ‘
AT - Vg — ol gl e = (E}‘
F(ihr)=(—1B, . " { e (=1 T S 1 S— e rt;”.:]ﬂm ..... }

the highest odd powers of ikr and of #hr in the series being (vhr)™*" and (@)™

Hence we get

R U e == e ]
+ (= 1) BB, (). h{"ﬂ e ”’“;;’:;—:*':” D iy, }

o= (=1)"4, tﬂ;é.u-) s ﬂ*’{a" s ---+':—]}'-—EE%_fﬁs'.{fk?‘)!‘ E“_’fi;+1' s } F(3),
R {Eﬁﬁ' sty 22 G g BT ST B e, }

7. Let ns now suppose that the medium extends without limit. When » is very

1d ; - : o
great i+ (; u!_'r) gfr = (ak)rtighr . Hence at a very great distance from the origin the

coefficients of P (u) and %Er;—'lﬂ in equation (5), § 5 become
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| W= il 'lC" gilpt+i () '.:_r"rl-'f-h'ﬁ'l L H{RT_F]} [D gfiptthr L ) g |'{_p¢-hr:|L
0 " [ " u "

— IG @t lpt kr} +f,.’ gt ;!-kr'li +ih' ”j gl Lptidr _j'j dJ .n:pr-—-ﬁr']f

The terms e'rtthrl and of(#W+4r pepresent disturbances travelling inwards. Hence, if
the disturbance is to be zero at infinity, we have C =0, D) =0; and the amount of
the displacement at any point in a medinm extending to infinity and bounded internally
by a surface vibrating in any assigned manner is given by two functions w and v; of the
form given in equation (3), § 5, where

S Ghr)=A4 " (1 {%) i

FGibr) =B (3 ) oo

Ta investigate the disturbance produced by the presence of a small fived sphere on the

axis of symmetry, if there @s no slipping at the surface of the sphere.

8. We shall now investigate the disturbance produced by the presence of a small
fixed sphere on the axis of symmetry, where the disturbance if the sphere were removed
would be given by the expressions

w= displacement along AP=2P (u) {df 4 Lz I}F'}

?.I
v = displacement perpendicular to AP=X %_ %éﬂ { £+ %4} glnt

where fo=d4," (1 i) g,
P (L

the waves being supposed to be long compared with the distance between the origin A
and the centre of sphere B, Let radius of B be b, and let distance between A and
centre of B be e. In order to express the conditions that the displacement should be
zero at the surface of B, we must find the resolved parts along and perpendicular to
EP of the displacement given above by » and v
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Taking the coefficient of P, (u),

r"+cmsﬂ"+ cain g ]

u, =displacement along BP =u,_ .

»,’ =displacement perpendicular to BP=—u, E—mnE +, r _E_E:GS H.

Taking the leading terms only of expressions for w,, v, given in equations (3) of para-
graph 6; and omitting the time factor &%, we get

2n! A k—A'k {5'111 ‘dP"{’“'}—(m+])(¢!159r+g)ﬂ{-“) } l

LE‘:.I[ e H_rt‘fa.
i 2, 1= AR dP,
v, =(=1)"1 L gw TEILI = et . {( as 8’ + L) {.M-l-{n+ 1) P (u). 51]15'} J

' =(—1).1c

We shall have to express u. and o' in series involving Legendre's functions of ', where
p'=cos® and their differential coefficients with respect to &\

This operation can be facilitated by the following transformations.
By a known formula®,

L L |
Pn!l#}z{_]} i?‘;l—!d:ﬂ?ul;’

. - 1 . .
thercfore, differentiating - times with respect to e,

B 1. f
R — 1:=:n+1 1

1___(‘:3_'_1) Iil{ } {?1'!‘1;{:”"1'2}11{ I‘I| df } .............. {3}

Differentiating this result (first) with respect to & keeping r' constant, and then with
respect to 1, kecping @' constant, we get

; F
%ﬁ{g_ﬂl&’d rﬁg&] (cusﬂ+ ){H—I—I}Pm}}
,}ﬂ{( g*,;.c){_ﬂ;;#}-lvfu—i—] BmE’P{,u}} =
3 £) _(n+1)(n+2) dP (u) v (n+1)(n+2)(n+3) dP,(u) r*
——ﬁ{( +:‘ .:m' 21 dd ¢ SA d6 u"""},

Reducing the values of w, v given in result (2) above by means of relations (4) we get

; _irﬂi.ﬁf&.f ?}ng#'JE;+...} AJf—nAh

“_I

wt=(=1)"dc. 2,

T mbd (]
[H

Pl:',u} (n+1}(n+2) dP(u') | Ak —ndh

Y _{_1} {{ +1} ___“23—_{{&' ﬂ+”-J l':-1+ii :

* Bee Maxwell's Eleetricity, Vol. 1. art. 183, equation (28],
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: o 2p! ""“‘ g m-l-n ™t A k—-ndh

s ty =D g L W men P ) = e i
i gy ek g ‘"1-" mAn AP ) P Ag—ndifh [ O
T T D so e i R

In order that the surface conditions may be satisfied, we shall have to take w4 (u))
for the whole displacement along BP; and v +(v) for the whele displacement perpen-
dicular to BP; where (w) and (v) are to be of such magnitude as to cause the whole
displacement due to w,, v, to be zero at the surface of the sphere B These terms (u)
(v,) must be of the form given m equations (3), § 6, namely,

R o L

e e S
(1-_']|=%E 1}"'.d—j}'bifr}.B_.(iﬂr]f""""“" {;,E?::a"t—amﬂin; P 1 “{ 1) 4 qmmi_ﬂt 31 ’:“ii"j‘"-} "
J_%EI 1y rIPnE#'} B_". (k) v+ 1;.311! ”r:a: ﬂi;l‘:"—]-; (m --}{ﬁ py? _,_ET;_Z.“ ;\rﬂ &) (). }

where the coustants B, B, have to be chosen so as to satisfy the conditions

Y (H",} :{}} , When »' =0,
v+ (v )=0

These equations of condition will give
(e 1 o AR =R AL R) s
Hamsl=l)N e 2" (nPe"™  C2m—2 lmb - (m 1Y

m(2m+ 1)+ 4 (1R 4 (m + 1) (2m— 3) IR 5,
[Em = 2 (Zm— ) w4 (m + 1) 1%} e f

. RN ﬂu.'{:ll-'n A,k 21 m 4+l i
By =(=1¥. s 2 (alf e  m.2m—2mit{m At D e
- (i + _’:ru. 4+ 1) A4 Al 4 om (2m — 3) R
[3!!; 2 2 (2m—3) [mk* + (m+ 1) 2*] s

to the second approximation. It is necessary to determine B_ and B to this order of

approximation, for, if we neglect the squares, it will be found on substitution that we
get (u.)=0, (7,)=0.

Substituting in equations (6) and writing €, for (=1)%k.d, €, for (=1)".4h.nd_,
we get

0. y= 2 (Ol ) S5 e p 1y T [:’.m+1}5fm~1u:“ (1A% o= (4 1) (2m—1) (PR U] B,
(0= G ) S e ) e e

2 (nl)" “.vu 2. m! {mk +|.'_m+l,lr’c-}? ¢ )
(0. _ il (C-0)) 'i‘r 1 WAL (') mtn! [(2m41) [l —(m—2) 2| v —m(2m—1) (B =A%) ] t'.iﬂ""‘ i
Pl = E“{n:; P sy U Al 2. m! {ml®+ (m + 1) k% "
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The displacement, whose components are given in equations (7), will be that produced
by the presence of B in the field of vibration, if high powers of kr and hr are
neglected.

9. Let us now consider the displacement produced by the simultaneous pulsations of
two small spheres in an elastic medinm, the waves in which are long compared with the
distance between the spheres; the centres of the spheres being supposed fixed in space,
and the displacements such that no slipping takes place at the surfaces of the spheres.

Let the radii of the spheres at the time ¢ be given by the equations

r,=a(l +u, sinpt),

v, =b (1 +wu, sin pi),

where u,, 4, arc small quantities.

The displacement at-any point due to the pulsations of A alone, if we neglect the
disturbance due to the presence of B in the field of vibration, will be ecompounded of

n, = displacement along 4P = ;_i L £, (fer, — pt)],

v, = displacement perpendicular to 4P =0,
205 (e = br, F )
r ¥

where filkr,—pt) =4
A and z being determined by the houndary conditions.

Similarly the displacement due to the pulsations of 7 alone will be compounded of
u, = displacement along BP = £ 1 f, (kr,=pt)l,
#

v, = displacement perpendicular to BP =1,

where fulbr—piy = TPt ),

2

B and @8 being determined by the boundary conditions.

Putting £, and f, into the exponential form, we have

o id cosa—4 sina (l _‘i) =il = pt) _idcosa+t A sing (1 @ ) gf ri—pt)
1 ok n dr, 2k T |
. _ el
fm iBeos B—Bsin (E. _'1_) gtk _ 1B cos B+ Bsin 8 (_1 d ) gilkre—st) E
. 2 r, dr, 2k Ta O, '
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The equations to find the constants are obtained by expressing that %, must be
au,sin pt at the surface of A and u, bu,sinpt at the surface of & for all values of ¢

These conditions give

A [ka cog (ka — o) — sin (ka — a)} =a'u,
ka sin (ka —a) 4+ cos(ka—a) =0 l

B e (5 e J ........................... (2),
kb sin (kb — 8) + cos (kb—3) =0

whence the constants can be determined.

The functions w, and u, will give the whole displacement to a high degree of
approximation at considerable distances from the spheres, the radii of which are supposed
to be small. But it iz evident that, in the immediate neighbourhood of the pulsating
bodies, these values for the displacement canmot safely be taken; for, the surface conditions
w=au,sinpt and v=0 when r,=a, and the corresponding conditions when r,=3% will not
be satisfied. We shall therefore have to investigate the disturbance at the surfaces of the
spheres 4 and B, in order to find the terms that have to be added to complete the
solution. This investigation would be very difficult in the general case; but, since in the
case under consideration we take the waves to be long, so that the lowest powers only
of kr need to be retained in the neighbourhood of the vibrating bodies, we can by sue-
cessive applications of equations (7), § 8, obtain a solution to any order of approximation
that may be required.

Taking account only of the lower powers of ke, %a, kb; we shall add terms w), v
of the forms given in the eqnations just allnded to, so that at those points, whose original
distance from the centre of B was b, the displacement may be compounded of au,sinpt
along the radius vector and zero perpendicular to it. The conditions at the surface of 4
will not be satisfied by these values, but, if we transform to the centre of A as pole, we
can add terms which will satisfy the conditions at the surface of that body. This series
of operations will in general have to be continued indefinitely; but, if an approximate
solution only is required, and if it should appear that the surface conditions are satisfied
for both bodies if a certain order of small quantities is rejected, we shall have obtained
a complete solution to that order of approximation.

Neglecting all the powers of La and kb except the lowest, we have, by (2),
A=dan,, B=0Wu, sna=1, sinfl=1,

therefore equations (1) become

WUl A ey 0t (1 E) ~itkr,—po |
,,";Ufr;_}ﬂ}__ i (_-: d—?‘l)ﬂ r _ﬁ (’F‘l I‘f!‘l e P

Silker,—pt)=— uy (}1 :f_i.) gilhr =10 — b"_it! (;’ di.;.) g—ibr=p0)
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whenee we obtain to a first approximation
(¢ S [k
TR 33 iw i, u,=2—rg:-za B AN e

with two other terms obtained by changing the sign of i

Introducing the condition that, at all points which were when undisturbed on the
surface of the sphere B, the displacement is to be bugde ™ along the radius vector and
zero perpendicular to it; we shall find that, in order to find the whole disturbance, we
shall have to introduce terms w», v of the same form as those given in equation (7), § 8,
so that

ia a’u, T i n[(2n+1)|( ﬂ—l}.ﬂ.‘*-— 4154 ]il (10 (20 —1) (1= f.l,)b’] | i
H: =1c El‘}- £ P‘}..[—].) +11J'H{FJ :H‘kg_'_ Ifﬂ-l- l}fi”ﬁ I Wi cn—; |
e 0, Jints dP {F] (Zn4 1) [nk"— (n=2) B} > —n (20— 1) (FF - 1*) b* b J
B op e =R "0 2 [0+ (n+ 1) 7] 1" o

(5,

if p=cosé,; 8, being the angle which », makes with B.Y.

Again, using the condition that at the surface of A, » should be equal to auge ™ and
that » should be zero; we shall have to add terms w/, v/ in order to counteract the
disturbance cansed by the displacement u, along BP. These terms will, as before, be

wfm ot nesp (o) MEAED (= DF —( 4 D (n4 1) (=1 (2= )

ST ﬂfre.k'+{n+1}ﬁ5'r“* T 1
e ba.”-'-'e—|pff dP, (p) (En+1) k= =2} r*—n(2n=1) (K=" a® o™ J

Sl Sy T ode, 2 5?1A'+{n+ 1) A} v > s
. (6),

The disturbance produced by «/, # at the surface of 4 and by ', »/ at the sur-

face of B will be found to be of the third order of the small quantities E and E If there-

fore we neglect the terms of the third order, we shall have a complete solution for the
displacement at any point. This displacement is given by those parts of the terms

w, S, w5 uy, w), v, which do not involve small gquantities of the third order.

3 U

At the surface of A the displacement will consist of

a’u, By : ab'u, 3R'r}+ (K —1°) a®
"I-:Pe =l -7 o L e iy nf
‘J;-: - 2c* By re bk 2 {l" + 2h%) 1’ L) e ]
= displacement perpendicular to AP }
_Vu, dP(p) . ot p‘,_t_gx__f.-_’_u_,,' (45 r = (K= A" a’ ufa” Fu} it |
T Tdb, 9 2+ 2y

i = displacement along 4 P=

with similar terms obtained by changing the sign of 7.

Similarly the displacement at the surface of B can be obtained.
Yor. XIV. Parr L. g
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10, Tnvestigation of the mutwal action of two small spheres pulsating in an elustic

medivm, the waves being supposed to be long compared with the distance between the centres
of the spheres.

Let us suppose the centres to be fixed in space, and assume that no slipping takes
place at the surfaces. Under these circumstances the displacement can be found as i
§ 9, and if small quantities of the third and higher orders be neglected we shall have
for the components of the displacement at the surface of A,

s E:’L:L i h— ﬁ:"f P, (m,) i~ + ui?n L {EF-:- (j: }:-hnl P, () i,
) .‘:;ru!,r dP, (u,) . st . O by 3 (1) (B = ﬁ'}a dP, (p) camint
2¢* dﬂ T 2+ 20t r.iﬂ, ;
with two similar terms got by changing sign of 4.
When r,=a we shall have
u=fg" =it p=0 j—;I={}, ::rg 0, and hence the dilatation e= :f—illi

Also the foree on the sphere A resolved along AB in the direction AR

f du, 1 du dp v .
_f-{(he+ﬂpd}l 08 ), — ,ul(rl {!&’+J‘—+L—?—_}mnﬂl}rfn—,

1

where do is an element of the surface and the integration is performed over the whole
of the sphere.

Sinee ’P“ (,) cos 8,de =0 an i::ml— sin @ do=0, unless n=1, we need only attend

Lu.)
t

to the terms in v and ¢ ionvolving P, (u,) fmd

Henee the foree in the direction AB

_ 3, i l"l_'?a-%qp}k':n‘;’ﬁ 4 ph® sin ﬂ
Dap? o P42

Introducing the condition (A +2u) 1*=ph" and taking sccount of the double sign of 1,
we get

! ain 8.

12mu (A +2u) b
N4 op at’

The resultant force on A4 can be found if we know the forms of w,, w,. If u,= Py

Force in direction AB at the time f = — L sinpt ... ... (1),

=p, where p, and p, are constants, we shall have during a complete period %}E
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£

12ru (A +20) B

v - & J‘ L] - N | "
Force on 4 in direction Al =— e u_f.:”L. a'p, (1 + p, sin pt)®sin pt dt

o Hruty)  Ba (2)

j} {Eh-’*—ﬁﬁ.} PjFH c‘: LR LS ] 1?-11r|-|‘H.-
This is a repulsion when p, and p, have the same sign and an attraction if they
have opposite signs. In either case the force varies according to the inverse square of the

distance between 4 and B.

11. Second approrimation.

We shall now include the terms of the third order in the expression for the dis-
placement. As in § 10, it is evident that the only terms which will euter into the

’ . : e 3 dP,
expression for the foree on A will be the coefficients of P (u), and of d H#j' The
coefficients of these terms in w, w, »', v, have already been considered, and the action

arising from them has been given in equation (2), § 10. We have next to resolve the
displacement given by w«/, »' in equations (5), § 0 along and perpendicular to AP, If
the resolved components are (u) and (v) we get, if the terms of the fourth order are
neglected,

(1)) z‘l'l'h;:b i :-(E_D.uﬂ & ) P(u). Hfzi:ﬁ-{:;{; Jﬁzbbz+ iné, d{.};“:] ‘ :*Ef-’r 4;;:] f+ ;[-I:’—fd 1 }“
' i 2h
2 (1).
rool !Euuc, _”5’ o e e jb ( r AP () 34 +.|{ Yot —(k uft 18
() =- ! Sll]ﬁ' L) {ﬂ. + F’f!",l T o8 t:) gf. - = ..JLJ-l- 205 v } !

These terms can be expanded in series involving Legendre’s coefficients of g, and
their differentials with respect to 8,. For by equation (3), § 8, we get

Pulptd _ gy, ——-11+ A1) P ()

+1) (n+2 rt
= = ':"L#PE ) o +,.,}......{2}.
therefore
sin@, . P,(n) 1) 1 [dP,(p,) Lnt 1dP,(u) r,
T g 2 i N A 3 a0
(n+1) (n+2) (dPfe) dP(u)] r*
+ 5.2] {_f-f'ﬂ. {4{9 1} (,.:‘ '|' L-t-‘:.:l.n.r. .{3:'.
P, () L T Tt 2 (n+1) Bw) — (n —2) Pylu) r
and o (msf?i—#)—{—- 1)*, e [Pl':a”‘l:' + z :i - din e
+1
+‘;‘E—!{.1{n+"j Plp)+2(n-3) P,(m) *+ ] S

Also differentiating equation (2) with respect to 8, keeping », constant, we get
1 aP.(u,) {n+1:|r {1&P{pﬁl}+n-l-"df’l"#]

v de, S 12! dé, Il di, ¢
r:"" F2)(n + 3) dF () i_... + } 3
—_— .’5' i O «{3),



G0 Mr LEAHY, ON THE PULSATIONS OF

sin 6, 4P, ()

2 L nnt)r [ 1
therefore h_ﬂ d&‘ =(—-1) —c-s.,--— [:"i'_'i!iPdF.?‘—Pu':#.:'}

rH-,.. (n+2) (n+3)

+ gy Bl) — Bl 2+ '1!‘.(».}-P.Lu,n%+.-.].......~.{6L

1 P, (i) s le T 1 4By
and W(ﬂmﬂl—?) AF, (k) _ (_qye iR E 1) [— at, ()

g, T gm |53 4l
1 Pf,u;.n . dP () v,  n+2 dF,(p,) _ay 28w
+53 {20+ 15 30— T P 2 2 s+ 9T 40—9) el
.............................. (7).

If all the terms of a higher order than the third be neglected, we get by the
ubove equations
iha’u 3he
()= = 5t e ¥ o Py
_ tha'w, .. 3N dE(n)
@) == " prow  dg

Using equation (7), § 8, we find the terms which have to be added in order to make
the whole displacement equal to awie™® ut the surface of 4. They are

__ibatu, _. i it ‘[ Bt Pt }
W, = 'i,;:.f_ & i + ah* le'l_,'! + :Z-;f-t] E—"f"l -+ {Fn:‘ _'|_ E.F'!.r} rl: jﬁ, E,u';} ‘U}
iiiu.“.-r_ = ah [ 2 {L! 1 k!} It e ‘I. dpP (# FEL R

T

TR B E T AR N | ) ) a'r, 2(F+24 77 u’ﬂ
Stmilarly, if we consider the whole displacement at the surface of B we ecan see that
we shall have to add terms a,", v in order to satisfy the surface conditions to the

2
third order of small quantities, where

w _ mq'; thy 3 aje B—# |
e =TT ¢ T o (P4 2 b, T2 P () ] .
i el 1, i )t ) .{ 3”*_:4_1,!} ___L'n—-ﬁ."_} JP_{FJ TR ey
T 22 " CF+2R 2R+ 200, 2P +2Wr})  de, J

The effect of ", v" at the surface of B or of wu”, »” at the surface of A4 will be of
the fourth order of small quantities, and can therefore be neglected to our approximation.

Hence we have the complete expression for the coefficients of P, (,) and E}gﬁ} to the

third order of approximation.

The second term in the expression for the force on A may now be found as in § 10.
It will be
T2 (4 2u)’

in the direction AB, if uw, and w, are, as before, supposed to be constants. This gives a
repulsive force, varying with the inverse eube of the distance hetween A and B.



SPHERES TN AN ELASTIC MEDITUM, 61

12. If any explanations of the nature of gravitation, or of electrical forces, are to
be based on suppositions of the transmission of motion, or stress through a medinm
intervening between the electriied bodies; it appears that such explanations must be baseld
on the hypothesis that the medinm behaves like an elastie solid, unless space is to be sup-
P-nacd to be filled with a second medium, whose properties differ from that in which light 1«
supposed to be propagated. Thus it appears that hypotheses based on the theory of ineom-
pressible fluids must be evroneous; and 16 should be observed that even if two media
are aidmitted, the second, if a fluid, ean hardly be supposed to be absolutely incompressible
This appears to be a serious objection to a theory which has been adduced® to explain
gravitation, based upon Bjerkoes' investigation, in which it iz supposed that all atows are
pulsating in phases not differing from one another by more than a qnarter period, and
that the intervening medium is an incompressible fluid. If this were the ease, the law
of universal attraction according to the law of the inverse square wonld follow; but unless
the medium is supposed to be absolutely imcompressible, in which ease ull pulsations would
be instantaneously diffused throughout space, there would on this theory be repulsion
hetween bodies at distances greater than a qguarter wave length, and bodies would at
certain distances repel one another, which is contrary to observation,

The electrical phenomena of attraction and repulsion are capable of explanation by
the results proved in this paper. If we suppose two groups of particles to be pulsating.

.P

f and —'T. atd that

go that the phases of the particles in the first group lie between

those of the other group lie between '-if and —ﬂf; 2p being the complete period; we
shall find, by an obvious extemsion of equation (2}, § 10, that the particles of the same
group will repel each other, the law of foree being that of the inverse square of the
distance, and will attract the particles belonging to the other group according to the
aame law of force. This 15 in accordance with observed electrical actions, and is based
on the hypothesis that the mediom which transmits eleetrieal vibrations is the same as
that by which the undulations of light are transmitted, The observed electrical effects
of attroction and repulai:}n._ conduction aod induction, can be Expf&iuud on this hj'pul.llt.'.-s'ir-'.
as in the ordinary two fluid theory. Tt should however be observed that the laws of
attraction and repulsion are supposed to hold good only for distances which do not exceed
a quarter wave length of the displacement corresponding to the period of the partieles
pulsation. This is as yet unverified by experiment, but, if it be untrue, all hypotheses
of eleetrical action arising from supposed periodic disturbances of the intervening medium
owing to the electrical condition of the body will in like manner be vitiated, It should
also. be mnoticed that no hypothesis 1s made econcerning the shape or density or other
properties of the two groups of particles, which may be supposed to differ in any or all
of these respects :—the only suppositions made coneerning them arve that they are pulsating,
and that their phases satisfy the couditions above indicated. Several other electrical pheno-
mena may be explained by a hypothesis similar to that given above. If we suppose the
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atoms composing matter to be also pulsating, then, by proper suppositions with regard
to their ph:’.ﬂcs. we ecan explain the cohesion of two or more atoms to form a molecule,
the apparent comparative affinity for one or the other kind of electricity that bodies
appenr to possess, and several of the phenomena of clectrolysis,



